l MOS® DSP (1.0.3)

XCORE-200 DSP Library

This APl reference manual describes the XMOS fixed-point digital signal processing software library. The
library implements of a suite of common signal processing functions for use on XMOS xCORE-200 multi-
core microcontrollers.

Required tools and libraries

e XTIMEcomposer Tools Version 14.0.1 or later

Required hardware

Only XMOS xCORE-200 based multicore microcontrollers are supported with this library. The previous
generation XS1 based multicore microntrollers are not supported.

The xCORE-200 has a single cycle 32x32->64 bit multiply/accumulate unit, single cycle double-word load
and store, dual issue instruction execution, and other instruction set enhancements. These features make
xCORE-200 an efficient platform for executing digital signal processing algorithms.

Prerequisites

This document assumes familiarity with the XMOS xCORE architecture, the XMOS tool chain, the ‘C’
programming language, and digital signal processing concepts.

Software version and dependencies

This document pertains to version 1.0.3 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

The library does not have any dependencies (i.e. it does not rely on any other libraries).

Related application notes

The following application notes use this library:

e AN00209 - xCORE-200 DSP Library

Copyright 2016 XMOS Ltd. 1 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

1 Overview

1.1 Introduction

This API reference manual describes the XMOS xCORE-200 fixed-point digital signal processing firmware
library. The library implements of a suite of common signal processing functions for use on XMOS xCORE-
200 multicore microcontrollers.

1.2 Library Organization

The library is divided into function collections with each collection covering a specific digital signal pro-
cessing algorithm category. The APl and implementation for each category are provided by a single ‘C’
header file and implementation file.

Category Source Files Functions

Fixed point lib_dsp_gformat Q16 through Q31 formats, fixed and floating point conversions

Filters lib_dsp_filters FIR, biquad, cascaded biquad, and convolution

Adaptive lib_dsp_adaptive LMS and NLMS Adaptive filters

Scalar math lib_dsp_math Multiply, square root, reciprocal, inverse square root
Vector math lib_dsp_vector Scalar/vector add/subtract/multiply, dot product

Matrix math lib_dsp_matrix Scalar/matrix add/subtract/multiply, inverse and transpose
Statistics lib_dsp_statistics Vector mean, sum-of-squares, root-mean-square, variance
Design lib_dsp_design Biquad coefficient generation for various filter types

Table 1: DSP library organization :class: narrow

Copyright 2016 XMOS Ltd. 2 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

2 Fixed-Point Format

2.1 Q Format Introduction

The library functions support 32 bit input and output data, with internal 64 bit accumulator. The output
data can be scaled to any of the supported Q Formats (Q16 through Q31). Further details about Q Format
numbers is available here : https://en.wikipedia.org/wiki/Q_(number_format).

2.2 The ‘g_format’ Parameter

All XMOS DSP library functions that incorporate a multiply operation accept a parameter called g_format.
This parameter can naively be used to specify the fixed point format for all operands and results (if
applicable) where the formats are the same for all parameters. For example:

result_g28 = lib_dsp_math_multiply(inputl_q28, input2_q28, 28);

The ‘g_format’ parameter, being used after one or more sequences of multiply and/or multiply-
accumulate, is used to right-shift the 64-bit accumulator before truncating the value back to a 32-bit
integer (i.e. the 32-bit fixed-point result). Therefore the ‘g_format’ parameter can be used to perform
the proper fixed-point adjustment for any combination of input operand fixed-point format and desired
fixed-point result format.

The output fixed-point fraction bit count is equal to the sum of the two input fraction bit counts minus
the desired result fraction bit count:

g_format = inputl fraction bit count + input2 fraction bit count - result fraction bit count

For example:

// q_format_parameter = 31 = 30 + 29 - 28
result_g28 = lib_dsp_math_multiply(inputl_q30, input2_q29, 31);

// q_format_parameter = 27 = 28 + 29 - 30
result_q30 = lib_dsp_math_multiply(inputl_q28, input2_q29, 27);

Copyright 2016 XMOS Ltd. 3 WWW.Xmos.com
XM009559

https://en.wikipedia.org/wiki/Q_(number_format

l MOS® DSP (1.0.3)

3 Filter Functions: Finite Impulse Response (FIR) Filter

Function lib_dsp_filters_fir

Description | This function implements a Finite Impulse Response (FIR) filter.

The function operates on a single sample of input and output data (i.e. each call to
the function processes one sample).

The FIR filter algorithm is based upon a sequence of multiply-
accumulate (MAC) operations. Each filter coefficient h[i] is multi-
plied by a state variable which equals a previous input sample x[i], or
y[n]l=x[n]*h[0]+x[n-1]*h[1]+x[n-2]*h[2]+x[n-N+1]*h[N-1]

The parameter filter_coeffs points to a coefficient array of size N = num_taps.
The filter coefficients are stored in forward order (e.g. h[0],h[1],h[N-1]).

The following example shows a five-tap (4th order) FIR filter with samples and coeffi-
cients represented in Q28 fixed-point format.

int filter_coeff[5] = { Q28(0.5),Q(-0.5),Q28(0.0),Q28(-0.5),Q28(0.5) };

int filter_state[4] = { 0, 0, 0, O };

int result = Tib_dsp_fir(sample, filter_coeff, filter_state, 5, 28);

The FIR algorithm involves multiplication between 32-bit filter coefficients and 32-bit
state data producing a 64-bit result for each coeffient and state data pair. Multiplica-
tion results are accumulated in 64-bit accumulator with the final result shifted to the
required fixed-point format. Therefore overflow behavior of the 32-bit multiply op-
eration and truncation behavior from final shifing of the accumulated multiplication
results must be considered.

Type int
Tib_dsp_filters_fir(int input_sample,
const int filter_coeffs[],
int state_data[],
int tap_count,
int g_format)

Parameters input_sample
The new sample to be processed.

filter_coeffs
Pointer to FIR coefficients array arranged as [b0,b1,b2,bN-1].

state_data
Pointer to filter state data array of length N. Must be initialized at startup
to all zeros.

tap_count Filter tap count (N = tap_count = filter order + 1).

g_format Fixed point format (i.e. number of fractional bits).

Returns The resulting filter output sample.

Copyright 2016 XMOS Ltd. 4 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

4 Filter Functions: Interpolating FIR Filter

Function lib_dsp_filters_interpolate

Description | This function implements an interpolating FIR filter.

The function operates on a single input sample and outputs a set of samples repre-
senting the interpolated data, whose sample count is equal to interp_factor. (i.e.
and each call to the function processes one sample and results in interp_factor
output samples).

The FIR filter algorithm is based upon a sequence of multiply-
accumulate (MAC) operations. Each filter coefficient h[i] is multi-
plied by a state variable which equals a previous input sample x[i], or
y[n]=x[n]*h[0]+x[n-1]*h[1]+x[n-2]*h[2]+x[n-N+1]*h[N-1]

filter_coeffs points to a coefficient array of size N = num_taps. The filter coeffi-
cients are stored in forward order (e.g. h[0],h[1],h[N-1]).

The FIR algorithm involves multiplication between 32-bit filter coefficients and 32-bit
state data producing a 64-bit result for each coefficient and state data pair. Multiplica-
tion results are accumulated in 64-bit accumulater with the final result shifted to the
required fixed-point format. Therefore overflow behavior of the 32-bit multiply op-
eration and truncation behavior from final shifing of the accumulated multiplication
results must be considered.

Type void
Tib_dsp_fiTlters_interpolate(int input_sample,
const int filter_coeffs[],
int state_data[],
int tap_count,
int interp_factor,
int output_samples[],
int g_format)

Continued on next page

Copyright 2016 XMOS Ltd. 5 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

Parameters | input_sample
The new sample to be processed.

filter_coeffs

Pointer to FIR coefficients array arranged
as: hM, h(1L+M) ,h (2L+M) ,h((N-1)L+M),
hl,h(1L+1),h2L+1) ,h((N-DL+1), h0,h(1L+0) ,h(2L+0) ,h((N-1)L#+0),
where M = N-1

state_data
Pointer to filter state data array of length N. Must be initialized at startup
to all zeros.

tap_count Filter tap count (N = tap_count = filter order + 1).

interp_factor
The interpolation factor/index (i.e. the up-sampling ratio). The interpo-
lation factor/index can range from 2 to 16.

output_samples
The resulting interpolated samples.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 6 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

5 Filter Functions: Decimating FIR Filter

Function lib_dsp_filters_decimate

Description | This function implements an decimating FIR filter.

The function operates on a single set of input samples whose count is equal to the
decimation factor. (i.e. and each call to the function processes decim_factor sam-
ples and results in one sample).

The FIR filter algorithm is based upon a sequence of multiply-
accumulate (MAC) operations. Each filter coefficient h[i] is multi-
plied by a state variable which equals a previous input sample x[i], or
y[n]l=x[n]*h[0]+x[n-1]*h[1]+x[n-2]*h[2]+x[n-N+1]*h[N-1]

filter_coeffs points to a coefficient array of size N = num_taps. The filter coeffi-
cients are stored in forward order (e.g. h[0],h[1],h[N-1]).

The FIR algorithm involves multiplication between 32-bit filter coefficients and 32-bit
state data producing a 64-bit result for each coefficient and state data pair. Multiplica-
tion results are accumulated in 64-bit accumulater with the final result shifted to the
required fixed-point format. Therefore overflow behavior of the 32-bit multiply op-
eration and truncation behavior from final shifing of the accumulated multiplication
results must be considered.

Type int
Tib_dsp_fiTlters_decimate(int input_samples[],
const int filter_coeffs[],
int state_data[],
int tap_count,
int decim_factor,
int g_format)

Parameters -input_samp] es
The new samples to be decimated.

filter_coeffs
Pointer to FIR coefficients array arranged as [b0,b1,b2,bN-1].

state_data
Pointer to filter state data array of length N. Must be initialized at startup
to all zeros.

tap_count Filter tap count (N = tap_count = filter order + 1).

decim_factor
The decimation factor/index (i.e. the down-sampling ratio).

g_format Fixed point format (i.e. number of fractional bits).

Returns The resulting decimated sample.

Copyright 2016 XMOS Ltd. 7 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

6 Filter Functions: Bi-Quadratic (BiQuad) IIR Filter

Function lib_dsp_filters_biquad

Description | This function implements a second order IIR (direct form I).

The function operates on a single sample of input and output data (i.e. and each call
to the function processes one sample).

The IIR filter algorithm is based upon a sequence of multiply-
accumulate (MAC) operations. Each filter coefficient b[i] is multi-
plied by a state variable which equals a previous input sample x[i], or
y[il=x[n]*b[0]+x[n-1]*b[1]+x[n-2]*b2+x[n-1]*a[1]+x[n-2]*a[2]

The filter coefficients are stored in forward order (e.g. b0,b1,b2,al,a?2).

Example showing a single Biquad filter with samples and coefficients represented in
Q28 fixed-point format:

int filter_coeff[5] = { Q28(+0.5), Q(-0.1), Q28(-0.5), Q28(-0.1), Q28
— (0.1) };

int filter_state[4] {o0, 0, 0, 0 };

int result = lib_dsp_biquad(sample, filter_coeff, filter_state, 28);

The IIR algorithm involves multiplication between 32-bit filter coefficients and 32-bit
state data producing a 64-bit result for each coefficient and state data pair. Multiplica-
tion results are accumulated in 64-bit accumulater with the final result shifted to the
required fixed-point format. Therefore overflow behavior of the 32-bit multiply op-
eration and truncation behavior from final shifing of the accumulated multiplication
results must be considered.

Type int

Tib_dsp_filters_biquad(int input_sample,
const int filter_coeffs[LIB_DSP_NUM_COEFFS_PER_BIQUAD],
int state_data[LIB_DSP_NUM_STATES_PER_BIQUAD],
int q_format)

Parameters input_sample
The new sample to be processed.

filter_coeffs
Pointer to biquad coefficients array arranged as [b0,b1,b2,al,a2].

state_data
Pointer to filter state data array (initialized at startup to zeros). The
length of the state data array is 4.

g_format Fixed point format (i.e. number of fractional bits).

Returns The resulting filter output sample.

Copyright 2016 XMOS Ltd. 8 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

7 Filter Functions: Cascaded BiQuad Filter

Function lib_dsp_filters_biquads

Description | This function implements a cascaded direct form | BiQuad filter.

The function operates on a single sample of input and output data (i.e. and each call

to the function processes one sample).

The IIR filter algorithm is based upon a sequence of multiply-

accumulate (MAC) operations. Each filter coefficient b[i] is multi-

plied by a state variable which equals a previous input sample x[i], or

yI[n]=x[n]*b[0]+x[n-1]*b[1]+x[n-2]*b2+x[n-1]*a[1]+x[n-2]*a[2]

The filter coefficients are stored in forward order (e.g.

sectionl:b0,bl,b2,al,a2,sectionN:b0,bl,b2,al,a?2).

Example showing a 4x cascaded Biquad filter with samples and coefficients repre-

sented in Q28 fixed-point format:

int filter_coeff[20] = { Q28(+0.5), Q(-0.1), Q28(-0.5), Q28(-0.1), Q28(0.1),

Q28(+0.5), Q(-0.1), Q28(-0.5), Q28(-0.1), Q28(0.1),
Q28(+0.5), Q(-0.1), Q28(-0.5), Q28(-0.1), Q28(0.1),
Q28(+0.5), Q(-0.1), Q28(-0.5), Q28(-0.1), Q28(0.1) };

int filter_state[16] = { 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0 };
int result = lib_dsp_cascaded_biquad(sample, filter_coeff, filter_state, 4, 28);

The IIR algorithm involves multiplication between 32-bit filter coefficients and 32-bit
state data producing a 64-bit result for each coefficient and state data pair. Multiplica-
tion results are accumulated in 64-bit accumulater with the final result shifted to the
required fixed-point format. Therefore overflow behavior of the 32-bit multiply op-
eration and truncation behavior from final shifing of the accumulated multiplication
results must be considered.

Type int
Tib_dsp_fiTlters_biquads(int input_sample,
const int filter_coeffs[],
int state_data[],
int num_sections,
int g_format)

Parameters -input_samp] e
The new sample to be processed.

filter_coeffs
Pointer to biquad coefficients array for all BiQuad sections. Arranged as
[sectionl:b0,bl,b2,al,a2,...sectionN:b0,bl,b2,al,a2].

state_data
Pointer to filter state data array (initialized at startup to zeros). The
length of the state data array is num_sections * 4.

num_sections
Number of BiQuad sections.

g_format Fixed point format (i.e. number of fractional bits).

Continued on next page

Copyright 2016 XMOS Ltd. 9 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

Returns The resulting filter output sample.

Copyright 2016 XMOS Ltd. 10 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

8 Adaptive Filter Functions: LMS Adaptive Filter

Function lib_dsp_adaptive_Ilms

Description | This function implements a least-mean-squares adaptive FIR filter.
LMS filters are a class of adaptive filters that adjust filter coefficients in order to create
a transfer function that minimizes the error between the input and reference signals.
FIR coefficients are adjusted on a per sample basis by an amount calculated from the
given step size and the instantaneous error.
The function operates on a single sample of input and output data (i.e. and each
call to the function processes one sample and each call results in changes to the FIR
coefficients). The general LMS algorithm, on a per sample basis, is to:

1) Apply the transfer function: output = FIR(input)

2) Compute the instantaneous error value: error = reference - output

3) Compute current coefficient adjustment delta: delta = mu * error

4) Adjust transfer function coefficients:

FIR_COEFFS[n] = FIR_COEFFS[n] + FIR_STATE[n] * delta

Example of a 100-tap LMS filter with samples and coefficients represented in Q28
fixed-point format:

int filter_coeff[100]
int filter_state[100]

{ ... not shown for brevity };
{0,0,0,0, ... not shown for brevity };

int output_sample = 1ib_dsp_adaptive_Tms
(
input_sample, reference_sample, &error_sample,
filter_coeff_array, filter_state_array, 100, Q28(0.01), 28
);

The LMS filter algorithm involves multiplication between two 32-bit values and 64-bit
accumulation as a result of using an FIR as well as coefficient step size calculations).
Multiplication results are accumulated in 64-bit accumulater with the final result
shifted to the required fixed-point format. Therefore overflow behavior of the 32-
bit multiply operation and truncation behavior from final shifing of the accumulated
multiplication results must be considered for both FIR operations as well as for coef-
ficient step size calculation and FIR coefficient adjustment.

Type int

Tib_dsp_adaptive_lms(int input_sample,
int reference_sample,
int error_samplel[],
int filter_coeffs[],
int state_data[],
int tap_count,
int step_size,
int g_format)

Continued on next page

Copyright 2016 XMOS Ltd. 11 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

Parameters | input_sample
The new sample to be processed.

reference_sample
Reference sample.

error_sample
Pointer to resulting error sample (error = reference - output)

filter_coeffs
Pointer to FIR coefficients arranged as [b0,b1,b2, ...,bN-1].

state_data
Pointer to FIR filter state data array of length N. Must be initialized at
startup to all zeros.

tap_count Filter tap count where N = tap_count = filter order + 1.

step_size Coefficient adjustment step size, controls rate of convergence.

g_format Fixed point format (i.e. number of fractional bits).

Returns The resulting filter output sample.

Copyright 2016 XMOS Ltd. 12 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

9 Adaptive Filter Functions: Normalized LMS Filter

Function lib_dsp_adaptive_nlms

Description | This function implements a normalized LMS FIR filter.
LMS filters are a class of adaptive filters that adjust filter coefficients in order to create
the a transfer function that minimizes the error between the input and reference
signals. FIR coefficients are adjusted on a per sample basis by an amount calculated
from the given step size and the instantaneous error.
The function operates on a single sample of input and output data (i.e. and each
call to the function processes one sample and each call results in changes to the FIR
coefficients).
The general NLMS algorithm, on a per sample basis, is to:
1) Apply the transfer function: output = FIR(input)
2) Compute the instantaneous error value: error = reference - output
3) Normalize the error using the instantaneous power computed by:
E = x[nJA2 + ... + x[n-N+1]A2
4) Update error value: error = (reference - output) / E
5) Compute current coefficient adjustment delta: delta =
6) Adjust transfer function coefficients:
FIR_COEFFS[n] = FIR_COEFFS[n] + FIR_STATE[n] = delta

mu % error

Example of a 100-tap NLMS filter with samples and coefficients represented in Q28
fixed-point format:

int filter_coeff[100]
int filter_state[100]

{ ... not shown for brevity };
{0,0, 0,0, ... not shown for brevity };

int output_sample = 1lib_dsp_adaptive_nlms
(
input_sample, reference_sample, &error_sample,
filter_coeff_array, filter_state_array, 100, Q28(0.01), 28
)

The LMS filter algorithm involves multiplication between two 32-bit values and 64-bit
accumulation as a result of using an FIR as well as coefficient step size calculations).
Multiplication results are accumulated in 64-bit accumulater with the final result
shifted to the required fixed-point format. Therefore overflow behavior of the 32-
bit multiply operation and truncation behavior from final shifing of the accumulated
multiplication results must be considered for both FIR operations as well as for coef-
ficient step size calculation and FIR coefficient adjustment.

Computing the coefficient adjustment involves taking the reciprocal of the instan-
taneous power computed by E = x[n]JA2 + x[n-1]JA2 + ... + x[n-N+1]A2. The
reciprocal is subject to overflow since the instantaneous power may be less than one.

Type int

Tib_dsp_adaptive_nTms(int input_sample,
int reference_sample,
int error_samplel[],
int filter_coeffs[],
int state_datal[],
int tap_count,
int step_size,
int q_format)

Continued on next page

Copyright 2016 XMOS Ltd. 13 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

Parameters | input_sample
The new sample to be processed.

reference_sample
Reference sample.

error_sample
Pointer to resulting error sample (error = reference - output)

filter_coeffs
Pointer to FIR coefficients arranged as [b0,b1,b2, ...,bN-1].

state_data
Pointer to FIR filter state data array of length N. Must be initialized at
startup to all zeros.

tap_count Filter tap count where N = tap_count = filter order + 1.

step_size Coefficient adjustment step size, controls rate of convergence.

g_format Fixed point format (i.e. number of fractional bits).

Returns The resulting filter output sample.

Copyright 2016 XMOS Ltd. 14 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

10 Scalar Math Functions: Multiply

Function lib_dsp_math_multiply

Description | Scalar multipliplication.

This function multiplies two scalar values and produces a result according to fixed-
point format specified by the q_format parameter.

The two operands are multiplied to produce a 64-bit result which is tested for over-
flow, clamped at the minimum/maximum value given the fixed-point format if over-
flow occurs, and finally shifted right by g_format bits.

Algorithm:
DY = X1 = X2
2) Y = min(max(Q_FORMAT_MIN, Y), Q_FORMAT_MAX, Y)

3) Y =Y > g_format

Example:

int result;
result = Tib_dsp_math_multiply(Q28(-0.33), sample, 28);

While saturation is employed after multiplication an overflow condition when prepar-
ing the final result must still be considered when specifying a Q-format whose fixed-
point numerical range do not accomodate the final result of multiplication and satu-
ration (if applied).

Type int

Tib_dsp_math_multiply(int inputl_value,
int input2_value,
int g_format)

Parameters | inputl_value
Multiply operand #1.

input2_value
Multiply operand #2.

g_format Fixed point format (i.e. number of fractional bits).

Returns inputl_value * input2_value.

Copyright 2016 XMOS Ltd. 15 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

11 Scalar Math Functions: Reciprocal

Function lib_dsp_math_reciprocal

Description | Scalar reciprocal.

This function computes the reciprocal of the input value using an iterative approxi-
mation method as follows:

1) result 1.0
2) result = result + result = (1 - input * result)
3) Repeat step #2 until desired precision is achieved

Example:

int result;
result = Tib_dsp_math_reciprocal(sample, 28);

Type int
Tib_dsp_math_reciprocal (int input_value, int g_format)

Parameters | jnput_value
Input value for computation.

g_format Fixed point format (i.e. number of fractional bits).

Returns The reciprocal of the input value.

Copyright 2016 XMOS Ltd. 16 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

12 Scalar Math Functions: Inverse Square Root

Function lib_dsp_math_invsqrroot
Description | Scalar inverse square root.
This function computes the reciprocal of the square root of the input value using an
iterative approximation method as follows:
1) result = 1.0

2) result = result + result = (1 - input * resultA2) / 2
3) Repeat step #2 until desired precision is achieved

Example:

int result;
result = Tib_dsp_math_invsqrroot(sample, 28);

Type int
Tib_dsp_math_invsqrroot(int input_value, int g_format)

Parameters | input_value
Input value for computation.

g_format Fixed point format (i.e. number of fractional bits).

Returns The inverse square root of the input value.

Copyright 2016 XMOS Ltd. 17 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

13 Scalar Math Functions: Square Root

Function lib_dsp_math_squareroot

Description | Scalar square root.
This function computes the square root of the input value using the following steps:

int result;
result = Tib_dsp_math_invsqrroot(input)
result = lib_dsp_math_reciprocal(result)

Example:

int result;
result = lib_dsp_math_squareroot(sample, 28);

Type int
Tib_dsp_math_squareroot(int input_value, int g_format)

Parameters | ipnput_value
Input value for computation.

g_format Fixed point format (i.e. number of fractional bits).

Returns The square root of the input value.

Copyright 2016 XMOS Ltd. 18 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

14 Vector Math Functions: Minimum Value

Function lib_dsp_vector_minimum
Description | Vector Minimum.
Locate the vector’s first occurring minimum value, returning the index of the first
occurring minimum value.
Example:
int samples[256];
int result = lib_dsp_vector_minimum(samples, 256);
Type int
Tib_dsp_vector_minimum(const int input_vector[],
int vector_length)
Parameters | input_vector
Pointer to source data array.
vector_Tlength
Length of the output and input arrays.
Returns Array index where first minimum value occurs.

Copyright 2016 XMOS Ltd. 19 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

15 Vector Math Functions: Maximum Value

Function

lib_dsp_vector_maximum

Description

Vector Minimum.

Locate the vector’s first occurring maximum value, returning the index of the first
occurring maximum value.

Example:

int samples[256];
int result = lib_dsp_vector_maximum(samples, 256);

Type

int
Tib_dsp_vector_maximum(const int input_vector[],
int vector_length)

Parameters

input_vector
Pointer to source data array.

vector_Tlength
Length of the output and input arrays.

Returns

Array index where first maximum value occurs.

Copyright 2016 XMOS Ltd. 20 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

16 Vector Math Functions: Element Negation

Function

lib_dsp_vector_negate

Description

Vector negation: R[i] = -X[i].
This function computes the negative value for each input element and sets the corre-
sponding result element to its negative value.
Each negated element is computed by twos-compliment negation therefore the min-
imum negative fixed-point value can not be negated to generate its corresponding
maximum positive fixed-point value. For example: -Q28(-8.0) will not result in a
fixed-point value representing +8.0.
Example:

int samples[256];

int result[256];

Tib_dsp_vector_negate(samples, result, 256);

Type

void

Tib_dsp_vector_negate(const int input_vector_X[],
int result_vector_R[],
int vector_length)

Parameters

input_vector_X
Pointer/reference to source data.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

Copyright 2016 XMOS Ltd. 21 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

17 Vector Math Functions: Element Absolute Value

Function lib_dsp_vector_abs

Description | Vector absolute value: R[i] = |X[i]].
Set each element of the result vector to the absolute value of the corresponding input
vector element.
Example:
int samples[256];
int result[256];
Tib_dsp_vector_abs(samples, result, 256);

If an element is less than zero it is negated to compute its absolute value. Negation is
computed via twos-compliment negation therefore the minimum negative fixed-point
value can not be negated to generate its corresponding maximum positive fixed-point
value. For example: -Q28(-8.0) will not result in a fixed-point value representing +8.0.

Type void

Tib_dsp_vector_abs(const int input_vector_X[],
int result_vector_R[],
int vector_length)

Parameters | jnput_vector_X
Pointer/reference to source data.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

Copyright 2016 XMOS Ltd. 22 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

18 Vector Math Functions: Scalar Addition

Function lib_dsp_vector_adds

Description | Vector / scalar addition: R[] = X[i] + A.
This function adds a scalar value to each vector element.
32-bit addition is used to compute the scaler plus vector element result. Therefore
fixed-point value overflow conditions should be observed. The resulting values are
not saturated.
Example:

int input_vector_X[256];

int input_scalar_A = Q28(0.333);

int result_vector_R[256];

Tib_dsp_vector_adds(input_vector_X, scalar_value_A, result_vector_R,

— 256);

Type void

Tib_dsp_vector_adds(const int input_vector_X[],
int input_scalar_A,
int result_vector_R[],
int vector_length)

Parameters | jnput_vector_X
Pointer/reference to source data array X

input_scalar_A
Scalar value to add to each input element

result_vector_R
Pointer to the resulting data array

vector_Tlength
Length of the input and output vectors

Copyright 2016 XMOS Ltd. 23 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

19 Vector Math Functions: Scalar Multiplication

Function lib_dsp_vector_muls

Description | Vector / scalar multiplication: R[i] = X[i] * A.
32-bit addition is used to compute the scaler plus vector element result. Therefore
fixed-point value overflow conditions should be observed. The resulting values are
not saturated.
Example:

int input_vector_X[256];

int input_scalar_A = Q28(0.333);

int result_vector_R[256];

Tib_dsp_vector_adds(input_vector_X, scalar_value_A, result_vector_R,

— 256);

Type void
Tib_dsp_vector_muls(const int input_vector_X[],
int input_scalar_A,
int result_vector_R[],
int vector_length,
int g_format)

Parameters | jnput_vector_X
Pointer/reference to source data array X.

input_scalar_A
Scalar value to multiply each element by.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format, the number of bits making up fractional part.

Copyright 2016 XMOS Ltd. 24 WWW.Xmos.com
XM009559

XMOS

DSP (1.0.3)

20 Vector Math Functions: Vector Addition

Function

lib_dsp_vector_addv

Description

Vector / vector addition: R[] = X[i] + Y[il].
32-bit addition is used to compute the scaler plus vector element result. Therefore
fixed-point value overflow conditions should be observed. The resulting values are
not saturated.
Example:

int input_vector_X[256];

int input_vector_Y[256];

int result_vector_R[256];

Tib_dsp_vector_addv(input_vector_X, input_vector._Y,
— 256);

result_vector_R,

Type

void
Tib_dsp_vector_addv(const int input_vector_X[],

const int input_vector_Y[],
int result_vector_R[],
int vector_length)

Parameters

input_vector_X

Pointer to source data array X.

input_vector_Y

Pointer to source data array Y.

result_vector_R

Pointer to the resulting data array.

vector_Tlength

Length of the input and output vectors.

Copyright 2016 XMOS Ltd. 25

WWW.XmMOos.com
XM009559

l MOS® DSP (1.0.3)

21 Vector Math Functions: Vector Subtraction

Function

lib_dsp_vector_subv

Description

Vector / vector subtraction: R[i] = X[i] - Y[i].
32-bit subtraction is used to compute the scaler plus vector element result. Therefore
fixed-point value overflow conditions should be observed. The resulting values are
not saturated.
Example:

int input_vector_X[256];

int input_vector_Y[256];

int result_vector_R[256];

Tib_dsp_vector_subv(input_vector_X, input_vector_Y, result_vector_R,

— 256);

Type

void

Tib_dsp_vector_subv(const int input_vector_X[],
const int input_vector_Y[],
int result_vector_R[],
int vector_length)

Parameters

input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

Copyright 2016 XMOS Ltd. 26 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

22 Vector Math Functions: Vector Multiplication

Function lib_dsp_vector_mulv

Description | Vector / vector multiplication: R[i] = X[i] = Y[i].
Elements in each of the input vectors are multiplied together using a 32-bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply).
Example:

int input_vector_X[256];

int input_vector_Y[256];

int result_vector_R[256];

Tib_dsp_vector_mulv(input_vector_X, input_vector_Y, result_vector_R,

— 256, 28);

Type void

Tib_dsp_vector_mulv(const int input_vector_X[],
const int input_vector_Y[],
int result_vector_R[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 27 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

23 Vector Math Functions: Vector multiplication and scalar addition

Function lib_dsp_vector_mulv_adds

Description | Vector multiplication and scalar addition: R[i] = X[i] = Y[i] + A.
Elements in each of the input vectors are multiplied together using a 32-bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply). 32-bit addition is used to compute the vector element
plus scalar value result. Therefore fixed-point value overflow conditions should be
observed. The resulting values are not saturated.
Example:

int input_vector_X[256];

int input_vector_Y[256];

int input_scalar_A = Q28(0.333);

int result_vector_R[256];

Tib_dsp_vector_mulv_adds(input_vector_X, input_vector_Y, scalar_value_A,
— result_vector_R, 256, 28);

Type void
Tib_dsp_vector_mulv_adds(const int input_vector_X[],
const int input_vector_Y[],
int input_scalar_A,
int result_vector_R[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

input_scalar_A
Scalar value to add to each X*Y result.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 28 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

24 Vector Math Functions: Scalar multiplication and vector addition

Function lib_dsp_vector_muls_addv

Description | Scalar multiplication and vector addition: R[i] = X[i] = A + Y[i].
Each element in the input vectors is multiplied by a scalar using a 32bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply). 32-bit addition is used to compute the vector element
minus vector element result. Therefore fixed-point value overflow conditions should
be observed. The resulting values are not saturated.
Example:

int input_vector_X[256];

int input_scalar_A = Q28(0.333);

int input_vector_Y[256];

int result_vector_R[256];

Tib_dsp_vector_muls_addv(input_vector_X, input_scalar_A, input_vector.Y,
— result_vector_R, 256, 28);

Type void
Tib_dsp_vector_muls_addv(const int input_vector_X[],
int input_scalar_A,
const int input_vector_Y[],
int result_vector_R[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_scalar_A
Scalar value to multiply each element by.

input_vector_Y
Pointer to source data array Y

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 29 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

25 Vector Math Functions: Scalar multiplication and vector subtraction

Function lib_dsp_vector_muls_subv

Description | Scalar multiplication and vector subtraction: R[i] = X[i] = A - Y[i].
Each element in the input vectors is multiplied by a scalar using a 32bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply). 32-bit subtraction is used to compute the vector element
minus vector element result. Therefore fixed-point value overflow conditions should
be observed. The resulting values are not saturated.
Example:

int input_vector_X[256];

int input_scalar_A = Q28(0.333);

int input_vector_Y[256];

int result_vector_R[256];

Tib_dsp_vector_muls_subv(input_vector_X, input_scalar_A, input_vector.Y,
— result_vector_R, 256, 28);

Type void
Tib_dsp_vector_muls_subv(const int input_vector_X[],
int input_scalar_A,
const int input_vector_Y[],
int result_vector_R[],
int vector_length,
int g_format)

Parameters | jnput_scalar_A
Scalar value to multiply each element by.

input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 30 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

26 Vector Math Functions: Vector multiplication and vector addition

Function lib_dsp_vector_mulv_addv

Description | Vector multiplication and vector addition: R[i] = X[i] = Y[i] + Z[i].
The elements in the input vectors are multiplied before being summed therefore
fixed-point multiplication behavior must be considered (see behavior for the function
Tib_dsp_math_multipTly). Due to successive 32-bit additions being accumulated
using 64-bit arithmetic overflow during the summation process is unlikely. The fi-
nal value, being effectively the result of a left-shift by g_format bits will potentially
overflow the final fixed-point value depending on the resulting summed value and the
chosen Q-format.
Example:

int input_vector_X[256];

int input_vector_Y[256];

int input_vector_Z[256];

int result_vector_R[256];

Tib_dsp_vector_mulv_subv(input_vector_X, input_vector_Y, input_vector_Z,
— result_vector_R, 256);

Type void
Tib_dsp_vector_mulv_addv(const int input_vector_X[],
const int input_vector_Y[],
const int input_vector_Z[],
int result_vector_RI[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

input_vector_Z
Pointer to source data array Z.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 31 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

27 Vector Math Functions: Vector multiplication and vector subtrac-
tion

Function lib_dsp_vector_mulv_subv

Description | Vector multiplication and vector addition: R[i] = X[i] = Y[i] - Z[i].
The elements in the input vectors are multiplied before being subtracted therefore
fixed-point multiplication behavior must be considered (see behavior for the function
Tib_dsp_math_multiply). Due to successive 32-bit subtractions being accumulated
using 64-bit arithmetic overflow during the summation process is unlikely. The fi-
nal value, being effectively the result of a left-shift by q_format bits will potentially
overflow the final fixed-point value depending on the resulting summed value and the
chosen Q-format.
Example:

int input_vector_X[256];

int input_vector_Y[256];

int input_vector_Z[256];

int result_vector_R[256];

Tib_dsp_vector_mulv_subv(input_vector_X, input_vector_Y, input_vector_Z,
— result_vector_R, 256);

Type void
Tib_dsp_vector_mulv_subv(const int input_vector_X[],
const int input_vector_Y[],
const int input_vector_Z[],
int result_vector_R[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

input_vector_Z
Pointer to source data array Z.

result_vector_R
Pointer to the resulting data array.

vector_Tlength
Length of the input and output vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 32 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

28 Matrix Math Functions: Element Negation

Function lib_dsp_matrix_negate

Description | Matrix negation: R[1][j] = -X[i]1[j].
Each negated element is computed by twos-compliment negation therefore the min-
imum negative fixed-point value can not be negated to generate its corresponding
maximum positive fixed-point value. For example: -Q28(-8.0) will not result in a
fixed-point value representing +8.0.
Example:

int samples[8][32];

int result[8][32];

Tib_dsp_matrix_negate(samples, result, 8, 32);

Type void

Tib_dsp_matrix_negate(const int input_matrix_X[],
int result_matrix_R[],
int row_count,
int column_count)

Parameters | input_matrix_X
Pointer/reference to source data.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input matrix.

column_count
Number of columns in input matrix.

Copyright 2016 XMOS Ltd. 33 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

29 Matrix Math Functions: Scalar Addition

Function lib_dsp_matrix_adds

Description | Matrix / scalar addition: R[i]1[j] = X[i][j] + A.
32-bit addition is used to compute the scaler plus matrix element result. Therefore
fixed-point value overflow conditions should be observed. The resulting values are
not saturated.
Example:

int dinput_matrix_X[8][32];

int input_scalar_A = Q28(0.333);

int result_vector_R[8][32];

Tib_dsp_matrix_adds(input_matrix_X, scalar_matrix_A, result_matrix_R,

— 8, 32);

Type void
Tib_dsp_matrix_adds(const int input_matrix_X[],
int input_scalar_A,
int result_matrix_R[],
int row_count,
int column_count)

Parameters | jnput_matrix_X
Pointer/reference to source data.

input_scalar_A
Scalar value to add to each input element.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input and output matrices.

column_count
Number of columns in input and output matrices.

Copyright 2016 XMOS Ltd. 34 WWW.Xmos.com
XM009559

XMOS

DSP (1.0.3)

30 Matrix Math Functions: Scalar Multiplication

Function lib_dsp_matrix_muls
Description | Matrix / scalar multiplication: R[i]1[j] = X[i]l[j] = A.
Each element of the input matrix is multiplied by a scalar value using a 32bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply).
Example:
int input_matrix_X[8][32];
int input_scalar_A = Q28(0.333);
int result_vector_R[8][32];
11'b;dsp)_.matr1'x_mu1s(input_matrix_X, scalar_value_A, result_matrix_R, 256, 8, 32, 28
Type void
Tib_dsp_matrix_muls(const int input_matrix_X[],
int input_scalar_A,
int result_matrix_R[],
int row_count,
int column_count,
int g_format)
Parameters | jnput_matrix_X

Pointer/reference to source data X.

input_scalar_A
Scalar value to multiply each element by.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input and output matrices.

column_count

Number of columns in input and output matrices.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 35

WWW.XmMOos.com
XM009559

l MOS® DSP (1.0.3)

31 Matrix Math Functions: Matrix Addition

Function lib_dsp_matrix_addm
Description | Matrix / matrix addition: R[i][j] = X[i]1[j]1 + Y[il[jl.
32-bit addition is used to compute the result for each element. Therefore fixed-point
value overflow conditions should be observed. The resulting values are not saturated.
Example:
int dinput_matrix_X [256];
int input_matrix_Y [256];
int result_matrix_R[256];
Tib_dsp_matrix_addv(input_matrix_X, input_matrix_Y, result_matrix_R,
— 8, 32);
Type void
Tib_dsp_matrix_addm(const int input_matrix_X[],
const int input_matrix_Y[],
int result_matrix_R[],
int row_count,
int column_count)
Parameters | jnput_matrix_X

Pointer to source data array X.

input_matrix_Y
Pointer to source data array Y.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input and output matrices.

column_count
Number of columns in input and output matrices.

Copyright 2016 XMOS Ltd. 36 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

32 Matrix Math Functions: Matrix Subtraction

Function lib_dsp_matrix_subm

Description | Matrix / matrix subtraction: R[i][j] = X[i1[j] - Y[il[3].
32-bit subtraction is used to compute the result for each element. Therefore fixed-
point value overflow conditions should be observed. The resulting values are not
saturated.
Example:

int dinput_matrix_X [256];

int input_matrix_Y [256];

int result_matrix_R[256];

Tib_dsp_matrix_addv(input_matrix_X, input_matrix_Y, result_matrix_R,

— 8, 32);

Type void

Tib_dsp_matrix_subm(const int input_matrix_X[],
const int input_matrix_Y[],
int result_matrix_R[],
int row_count,
int column_count)

Parameters | input_matrix_X
Pointer to source data array X.

input_matrix_Y
Pointer to source data array Y.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input and output matrices.

column_count
Number of columns in input and output matrices.

Copyright 2016 XMOS Ltd. 37 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

33 Matrix Math Functions: Matrix Multiplication

Function lib_dsp_matrix_mulm

Description | Matrix / matrix multiplication: R[i][j] = X[i1[j] = Y[il[j].
Elements in each of the input matrices are multiplied together using a 32bit mul-
tiply 64-bit accumulate function therefore fixed-point multiplication and g-format
adjustment overflow behavior must be considered (see behavior for the function
Tib_dsp_math_multiply).
Example:

int input_matrix_X[8][32];

int input_matrix_Y[8][32];

int result_vector_R[8][32];

Tib_dsp_matrix_mulm(input_matrix_X, input_matrix_Y, result_matrix_R, 256, 8, 32, 28

=);

Type void

Tib_dsp_matrix_mulm(const int input_matrix_X[],
const int input_matrix_Y[],
int result_matrix_R[],
int row_count,
int column_count,
int g_format)

Parameters | jnput_matrix_X
Pointer to source data array X.

input_matrix_Y
Pointer to source data array Y.

result_matrix_R
Pointer to the resulting 2-dimensional data array.

row_count Number of rows in input and output matrices.

column_count
Number of columns in input and output matrices.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 38 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

34 Statistics Functions: Vector Mean

Function lib_dsp_vector_mean

Description | Vector mean: R = (X[0] + X[N-1]) / N.

This function computes the mean of the values contained within the input vector.
Due to successive 32-bit additions being accumulated using 64-bit arithmetic over-
flow during the summation process is unlikely. The final value, being effectively the
result of a left-shift by g_format bits will potentially overflow the final fixed-point
value depending on the resulting summed value and the chosen Q-format.

Example:

int result;
result = lib_dsp_vector_mean(input_vector, 256, 28);

Type int

Tib_dsp_vector_mean(const int input_vector_X[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

vector_Tlength
Length of the input vector.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 39 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

35 Statistics Functions: Vector Power (Sum-of-Squares)

Function

lib_dsp_vector_power

Description

Vector power (sum of squares): R = X[0]A2 + X[N-1]A2.
This function computes the power (also know as the sum-of-squares) of the values
contained within the input vector.
Since each element in the vector is squared the behavior for fixed-point multiplication
should be considered (see behavior for the function Tib_dsp_math_multiply). Due
to successive 32-bit additions being accumulated using 64-bit arithmetic overflow
during the summation process is unlikely. The final value, being effectively the result
of a left-shift by g_format bits will potentially overflow the final fixed-point value
depending on the resulting summed value and the chosen Q-format.
Example:

int result;

result = Tib_dsp_vector_power(input_vector, 256, 28);

Type

int

Tib_dsp_vector_power(const int input_vector_X[],
int vector_length,
int g_format)

Parameters

input_vector_X
Pointer to source data array X.

vector_Tlength
Length of the input vector.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 40 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

36 Statistics Functions: Root Mean Square (RMS)

Function lib_dsp_vector_rms

Description | Vector root mean square: R = ((X[0]A2 + X[N-1]A2) / N) A 0.5).
This function computes the root-mean-square (RMS) of the values contained within
the input vector.

result = 0

for i = 0 to N-1: result += input_vector_X[i]

return lib_dsp_math_squareroot(result / vector_length)

Since each element in the vector is squared the behavior for fixed-point multiplication
should be considered (see behavior for the function Tib_dsp_math_multiply). Due
to successive 32-bit additions being accumulated using 64-bit arithmetic overflow
during the summation process is unlikely. The squareroot of the ‘sum-of-squares di-
vided by N uses the function Tib_dsp_math_squareroot; see behavior for that func-
tion. The final value, being effectively the result of a left-shift by q_format bits will
potentially overflow the final fixed-point value depending on the resulting summed
value and the chosen Q-format.
Example:

int result;

result = lib_dsp_vector_rms(input_vector, 256, 28);

Type int

Tib_dsp_vector_rms(const int input_vector_X[],
int vector_length,
int gq_format)

Parameters | jnput_vector_X
Pointer to source data array X.

vector_Tlength
Length (N) of the input vector.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 41 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

37 Statistics Functions: Dot Product

Function lib_dsp_vector_dotprod

Description | Vector dot product: R = X[0] * Y[0] + X[N-1] = Y[N-1].
This function computes the dot-product of two equal length vectors.
The elements in the input vectors are multiplied before being summed therefore
fixed-point multiplication behavior must be considered (see behavior for the function
Tib_dsp_math_multiply). Due to successive 32-bit additions being accumulated
using 64-bit arithmetic overflow during the summation process is unlikely. The fi-
nal value, being effectively the result of a left-shift by q_format bits will potentially
overflow the final fixed-point value depending on the resulting summed value and the
chosen Q-format.
Example:

int result;

result = lib_dsp_vector_dotprod(input_vector, 256, 28);

Type int

Tib_dsp_vector_dotprod(const int input_vector_X[],
const int input_vector_Y[],
int vector_length,
int g_format)

Parameters | input_vector_X
Pointer to source data array X.

input_vector_Y
Pointer to source data array Y.

vector_Tlength
Length of the input vectors.

g_format Fixed point format (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 42 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

38 Transform Functions: FFT Bit Reversal

Function lib_dsp_fft_bit_reverse
Description | This function preforms index bit reversing on the the arrays around prior to comput-
ing an FFT.

A calling sequence for a forward FFT involves lib_dsp_fft_bit_reverse() fol-
lowed by lib_dsp_fft_forward_complex(), and for an inverse FFT it involves
lib_dsp_fft_bit_reverse() followed by lib_dsp_fft_inverse_complex(). In some cases bit
reversal can be avoided, for example when computing a convolution.

Type void
Tib_dsp_fft_bit_reverse(lib_dsp_fft_complex_t pts[], int N)

Parameters | pts Array of complex input points
N number of points. Must be a power of 2, both re and im should be N
long

Copyright 2016 XMOS Ltd. 43 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

39 Transform Functions: Forward Complex FFT

Function lib_dsp_fft_forward_complex

Description | This function computes a forward FFT.

The complex input signal is supplied in an array of real and imaginary fixed-point
values. The same array is also used to store the output. The number of points must
be a power of 2, and the array of sine values should contain a quarter sine-wave. Use
one of the lib_dsp_sine_N tables. The function does not perform bit reversal of the
data. If required then lib_dsp_fft_bit_reverse() should be called beforehand.

Type void
Tib_dsp_fft_forward_complex(Tib_dsp_fft_complex_t pts[],
int N,
const int sine[])
Parameters | pts Array of complex input points. Must be 64-bit aligned to enable efficient
double word loads and stores
N number of points. Must be a power of 2.
sine array of N/4+1 sine values, each represented as a sign bit, and a

31 bit fraction. 1 should be represented as Ox7fffffff. Arrays are
provided in lib_dsp_tables.c; for example, for a 1024 point FFT use
lib_dsp_sine_1024.

Copyright 2016 XMOS Ltd. 44 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

40 Transform Functions: Forward Real FFT’s

Function lib_dsp_fft_forward_tworeals

Description | This function computes the FFT of two real sequences in one go.

It uses a nifty trick () that enables one to use a single complex FFT to compute two
real FFTs simultaneously. The real inputs should be in the first two real arrays, the
output is in the real and imaginary arrays (the output of a real FFT is still a complex
number).

Type void

Tib_dsp_fft_forward_tworeals(Tib_dsp_fft_complex_t two_re[],
Tib_dsp_fft_complex_t two_im[],
int N,
const int sine[])

Parameters | two_re array containing two real signals on which to compute FFT, on output
this array stores the real part of the complex FFT on the two real signals.

two_im imaginary parts of complex FFT of two real signals in first array
N number of points
Ssine array of N/4+1 sine values, each represented as a sign bit, and a

31 bit fraction. 1 should be represented as Ox7fffffff. Arrays are
provided in lib_dsp_tables.c; for example, for a 1024 point FFT use
lib_dsp_sine_1024.

Copyright 2016 XMOS Ltd. 45 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

41 Transform Functions: Inverse Complex FFT

Function lib_dsp_fft_inverse_complex
Description | This function computes an inverse FFT.
The complex input array is supplied as two arrays of integers, with numbers rep-
resented as fixed-point values. The number of points must be a power of 2,
and the array of sine values should contain a quarter sine-wave. Use one of the
lib_dsp_sine_N tables. The function does not perform a bit-twiddle - if required then
lib_dsp_fft_bit_reverse() should be called beforehand.
Type void
Tib_dsp_fft_inverse_complex(Tib_dsp_fft_complex_t pts[],
int N,
const int sinel])
Parameters | pts Array of complex input points
N number of points. Must be a power of 2, both re and im should be N
long
Ssine array of N/4+1 sine values, each represented as a sign bit, and a

31 bit fraction. 1 should be represented as Ox7fffffff. Arrays are
provided in lib_dsp_tables.c; for example, for a 1024 point FFT use
lib_dsp_sine_1024.

Copyright 2016 XMOS Ltd. 46 WWW.Xmos.com

XM009559

l MOS® DSP (1.0.3)

42 Transform Functions: Inverse Real FFT’s

Function lib_dsp_fft_inverse_tworeals

Description | This function computes the inverse FFT on two sets of complex data that are known
to result in real numbers only in one go.

It uses a nifty trick () that enables one to use a single complex inverse FFT to compute
two real inverse FFTs simultaneously. The outputs are in the two real arrays, the
imaginary arrays are unchanged.

Type void

Tib_dsp_fft_inverse_tworeals(lib_dsp_fft_complex_t two_re[],
Tib_dsp_fft_complex_t two_im[],
int N,
const int sine[])

Parameters | two_re array containing two real frequency domain signals on which to compute
inverse FFT. On output this array stores two real time domain signals

two_im array containing two imaginary frequency domain signals on which to
compute inverse FFT

N number of points

sine array of N/4+1 sine values, each represented as a sign bit, and a
31 bit fraction. 1 should be represented as Ox7fffffff. Arrays are
provided in lib_dsp_tables.c; for example, for a 1024 point FFT use
lib_dsp_sine_1024.

Copyright 2016 XMOS Ltd. 47 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

43 Filter Design Functions: Notch Filter

Function lib_dsp_design_biquad_notch

Description | This function generates BiQuad filter coefficients for a notch filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_notch(0.25, 0.707, coeffs, 28);

Type void

Tib_dsp_design_biquad_notch(double filter_frequency,
doubTle filter_Q,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter center frequency normalized to the sampling frequency.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.
biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-

cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 48 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

44 Filter Design Functions: Low-pass Filter

Function lib_dsp_design_biquad_lowpass

Description | This function generates BiQuad filter coefficients for a low-pass filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_lowpass(0.25, 0.707, coeffs, 28);

Type void

Tib_dsp_design_biquad_lowpass(double filter_frequency,
double filter_Q,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter cutoff (-3db) frequency normalized to the sampling frequency.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.
biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-

cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 49 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

45 Filter Design Functions: High-pass Filter

Function lib_dsp_design_biquad_highpass

Description | This function generates BiQuad filter coefficients for a high-pass filter.
The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.
Example showing a filter coefficients generation using Q28 fixed-point formatting.
int coeffs[5];
Tib_dsp_design_biquad_highpass(0.25, 0.707, coeffs, 28);

Type void

Tib_dsp_design_biquad_highpass(double filter_frequency,
double filter_Q,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter cutoff (-3db) frequency normalized to the sampling frequency.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.
biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-

cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 50 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

46 Filter Design Functions: All-pass Filter

Function lib_dsp_design_biquad_allpass

Description | This function generates BiQuad filter coefficients for an all-pass filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_allpass(0.25, 0.707, coeffs, 28);

Type void

Tib_dsp_design_biquad_allpass(double filter_frequency,
double filter_Q,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter center frequency normalized to the sampling frequency.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.
biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-

cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 51 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

47 Filter Design Functions: Band-pass Filter

Function lib_dsp_design_biquad_bandpass

Description | This function generates BiQuad filter coefficients for a band-pass filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_bandpass(0.20, 0.30, coeffs, 28);

Type void

Tib_dsp_design_biquad_bandpass(double filter_frequencyl,
double filter_frequency2,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequencyl
Filter cutoff #1 (-3db) frequency normalized to the sampling frequency.
0 < frequencyl < 0.5, where 0.5 represents Fs/2.

filter_frequency?
Filter cutoff #2 (-3db) frequency normalized to the sampling frequency.
0 < frequency2 < 0.5, where 0.5 represents Fs/2. Note that fre-
quencyl must be less than to frequency?2.

biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-
cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 52 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

48 Filter Design Functions: Peaking Filter

Function lib_dsp_design_biquad_peaking

Description | This function generates BiQuad filter coefficients for a peaking filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_notch(0.25, 0.707, coeffs, 28);

Type void

Tib_dsp_design_biquad_peaking(double filter_frequency,
double filter_Q,
double peak_qgain_db,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter center frequency normalized to the sampling frequency.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.

peak_gain_db
The filter gain in dB (postive or negative). +gain results in peaking gain
(gain at peak center = gain_db). -gain results in attenuation (gain at
peak center = -gain_db).

biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-
cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 53 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

49 Filter Design Functions: Base Shelving Filter

Function lib_dsp_design_biquad_lowshelf

Description | This function generates BiQuad filter coefficients for a bass shelving filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_lowshelf(0.25, 0.707, +6.0, coeffs, 28);

Type void

Tib_dsp_design_biquad_lowshelf(double filter_frequency,
double filter_Q,
double shelf_gain_db,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter frequency (+3db or -3db point) normalized to Fs.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.

shelf_gain_db
The filter shelf gain in dB (postive or negative). +gain results in bass
shelf with gain of ‘shelf_gain_db’. -gain results in bass shelf with atten-
uation of ‘shelf_gain_db’.

biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-
cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 54 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

50 Filter Design Functions: Treble Shelving Filter

Function lib_dsp_design_biquad_highshelf

Description | This function generates BiQuad filter coefficients for a treble shelving filter.

The filter coefficients are stored in forward order (e.g. b0,bl,b2,al,a2). The fre-
quency specification is normalized to the Nyquist frequency therefore the frequency
value must be in the range of 0.0 <= F < 0.5 for valid filter coefficients.

Example showing a filter coefficients generation using Q28 fixed-point formatting.

int coeffs[5];
Tib_dsp_design_biquad_lowshelf(0.25, 0.707, +6.0, coeffs, 28);

Type void

Tib_dsp_design_biquad_highshelf(double filter_frequency,
doubTle filter_Q,
double shelf_gain_db,
int biquad_coeffs[5],
int g_format)

Parameters | filter_frequency
Filter frequency (+3db or -3db point) normalized to Fs.
0 < frequency < 0.5, where 0.5 represents Fs/2.

filter_Q The filter Q-factor.

shelf_gain_db
The filter shelf gain in dB (postive or negative). +gain results in bass
shelf with gain of ‘shelf_gain_db’. -gain results in bass shelf with atten-
uation of ‘shelf_gain_db’.

biquad_coeffs
The array used to contain the resulting filter coefficients. Filter coeffi-
cients are ordered as [b0,bl,b2,al,a2].

g_format Fixed point format of coefficients (i.e. number of fractional bits).

Copyright 2016 XMOS Ltd. 55 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

APPENDIX A - Known Issues

There are no known issues.

Copyright 2016 XMOS Ltd. 56 WWW.Xmos.com
XM009559

l MOS® DSP (1.0.3)

APPENDIX B - xCORE-200 DSP library change log

B.1 1.0.3

e Update to source code license and copyright

B.2 1.0.2

e FFT and inverse FFT for two complex short int signals

B.3 1.0.1

e FFT and inverse FFT for complex signals or two real signals.

B.4 1.0.0

e Initial version

XMOS

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 57 WWW.Xmos.com
XM009559

	xCORE-200 DSP Library
	Overview
	Introduction
	Library Organization

	Fixed-Point Format
	Q Format Introduction
	The `q_format' Parameter

	Filter Functions: Finite Impulse Response (FIR) Filter
	Filter Functions: Interpolating FIR Filter
	Filter Functions: Decimating FIR Filter
	Filter Functions: Bi-Quadratic (BiQuad) IIR Filter
	Filter Functions: Cascaded BiQuad Filter
	Adaptive Filter Functions: LMS Adaptive Filter
	Adaptive Filter Functions: Normalized LMS Filter
	Scalar Math Functions: Multiply
	Scalar Math Functions: Reciprocal
	Scalar Math Functions: Inverse Square Root
	Scalar Math Functions: Square Root
	Vector Math Functions: Minimum Value
	Vector Math Functions: Maximum Value
	Vector Math Functions: Element Negation
	Vector Math Functions: Element Absolute Value
	Vector Math Functions: Scalar Addition
	Vector Math Functions: Scalar Multiplication
	Vector Math Functions: Vector Addition
	Vector Math Functions: Vector Subtraction
	Vector Math Functions: Vector Multiplication
	Vector Math Functions: Vector multiplication and scalar addition
	Vector Math Functions: Scalar multiplication and vector addition
	Vector Math Functions: Scalar multiplication and vector subtraction
	Vector Math Functions: Vector multiplication and vector addition
	Vector Math Functions: Vector multiplication and vector subtraction
	Matrix Math Functions: Element Negation
	Matrix Math Functions: Scalar Addition
	Matrix Math Functions: Scalar Multiplication
	Matrix Math Functions: Matrix Addition
	Matrix Math Functions: Matrix Subtraction
	Matrix Math Functions: Matrix Multiplication
	Statistics Functions: Vector Mean
	Statistics Functions: Vector Power (Sum-of-Squares)
	Statistics Functions: Root Mean Square (RMS)
	Statistics Functions: Dot Product
	Transform Functions: FFT Bit Reversal
	Transform Functions: Forward Complex FFT
	Transform Functions: Forward Real FFT's
	Transform Functions: Inverse Complex FFT
	Transform Functions: Inverse Real FFT's
	Filter Design Functions: Notch Filter
	Filter Design Functions: Low-pass Filter
	Filter Design Functions: High-pass Filter
	Filter Design Functions: All-pass Filter
	Filter Design Functions: Band-pass Filter
	Filter Design Functions: Peaking Filter
	Filter Design Functions: Base Shelving Filter
	Filter Design Functions: Treble Shelving Filter
	Known Issues
	xCORE-200 DSP library change log
	1.0.3
	1.0.2
	1.0.1
	1.0.0

